
Stata Lab 1 Mapping Growth:
Basic Maps

Vinzent Ostermeyer, adapted Jonathan Jayes

2023-01-30

Table of contents

Purpose . 2
Structure . 3
Getting started . 4

Install additional programs and set-up 4
Data types . 6

Importing the Roses-Wolf dataset from Excel
into Stata 7

Importing the shapefiles into Stata 11
Merge shapefiles and data together 16

Formatting and Creating Variables 18
Summary statistics . 21

Tab for summaries of categorical variables. 21
Summarize for summaries of numeric variables . 22
Exporting summary tables 22

Basic maps . 23
Basic command 24
Adding titles and notes 24
Introducing a fill 25
Change the colour palette 26
Change the formatting of the legend 27
Fix legend formatting 28
Change legend breaks and add a title 29
What do we do about the areas with no data? . . 32

Purpose

� One goal of this course is to teach students how to identify
a good map – one which is clear, informative and attractive –
and familiarise students with the commands which allow the
creation of these maps in Stata.�

2

In addition, your lab paper (� due March 1st) requires that you
include at least 6 maps, so it is worth concentrating in the labs
and making use of these resources.�

� This document is intended to allow you to keep up with the
Stata Lab 1 that we will work through in class.�

You can read the document on this website, or download the
same information in pdf format here�.

It will include the commands the we use and the output, as well
as some hints and tips that will be useful during your projects,
I hope.�

Structure

Today we will be covering the following topics:

1. Installing basic packages: We will go over how to in-
stall the necessary packages in order to run our analysis.
This will include packages such as “spmap” and “geo2xy”
which will allow us to create maps in Stata.

2. Data types: We will discuss the different types of data
that we will be working with in this lab. Specifically,
we will be using time series data from a spreadsheet and
map data from a shapefile. It is important to understand
the structure and format of these data types in order to
properly analyze and visualize them.

3. Basic mapping: Once we have our data, we will learn how
to draw a basic map using the “maps” and “maptools”
packages. We will go over how to import the shapefile
data, how to define the map scale, and how to add differ-
ent layers to the map such as points, lines, and polygons.

By the end of this lab, you should have a solid understanding
of how to install necessary packages, how to work with different
types of data, and how to draw a basic map in Stata.

�� � Let’s get started!

3

Getting started

Given that you have encountered Stata previously in your stud-
ies, I will not spend undue time explaining the basics. If you
want to brush up on Stata’s syntax, I recommend having a look
at these slides from Oscar Torres-Reyna, or this set of Youtube
videos From Sebastian Wai. I’ve put together a comprehensive
set of resources on this page here.

Install additional programs and set-up

First we need to install the packages in Stata that we will make
use of. Please do this before our lab session in order to save
time.

We use the ssc install command, as follows:

ssc install spmap, replace
ssc install geo2xy, replace
ssc install shp2dta, replace
ssc install schemepack, replace
ssc install scheme-burd, replace
ssc install colrspace, replace
ssc install palettes, replace
ssc install egenmore, replace
ssc install outreg2, replace

Note

To run do-files click the “run-button” or highlight the lines
of code and hit ctrl + D (Windows) or shift + cmd + D
(Mac)

Running the command should produce output in the console
that looks like this:

. ssc install geo2xy, replace
checking geo2xy consistency and verifying not

already installed...
installing into c:\ado\plus\... installation

4

https://github.com/j-jayes/EOSE09/blob/b8444dd95783f4434ab63c4ad28b0f3033d4fd0a/resources/StataTutorial.pdf
https://www.youtube.com/watch?v=oXsPgQe-aqs&ab_channel=SebastianWaiEcon
https://www.youtube.com/watch?v=oXsPgQe-aqs&ab_channel=SebastianWaiEcon
resources/resources.qmd

complete.
...

Always comment your code

In Stata you can comment your code in one line
like so
Or if you want to write a longer string
/*You can put your longer string of text inside
a set of slashes and stars*/

Setting a directory

It is useful to put all of your work inside a specific file directory.
This way, Stata knows where to look for your files and where
to save output, like regression tables.

The path to my folder where I have the files for this lab is:

C:/Users/User/Documents/Recon/EOSE09/stata_files/

If you have a Mac, it will look something like this:

Users/Jonathan/Documents/Stata-lab/

If you want to change the settings on your Mac to display the
file path in your Finder window, follow this link.

To tell Stata that this is where I want it to look for my files,
I’ll use the cd (current directory) command in my do-file.

cd "C:/Users/User/Documents/Recon/EOSE09/stata_files/" # set your directory

If successful, in the console I will see the following output:

. cd "C:/Users/User/Documents/Recon/EOSE09/stata_files/"
set your directory
C:\Users\User\Documents\Recon\EOSE09\stata_files

You can call the help window by typing help into the console,
and set your Stata version for compatability reasons with the
version command, like so:

5

https://www.lifewire.com/use-macs-hidden-finder-path-bar-2260868

help # Stata's help function; cf. also the web or Statalist
version 16.1 # version control

Data types

In order to draw a map in Stata, we need to combine the in-
formation from our shapefile (which contains the geographic
information such as the shape and location of the features on
the map) with the information from our spreadsheet (which
contains the data we want to display on the map, such as pop-
ulation or income).

The process of combining these two types of data is called
“joining” or “merging” and it allows us to link the attributes
from the spreadsheet to the geographic features in the shape-
file. Without joining the data, we would only have the shape
of the features on the map, but not the information we want to
display.

You are likely familiar with the first type of data, it is a wide
dataset in an excel spreadsheet.

The second is a shapefile - a file that stores the information
a software program needs to draw a map.

Shapefiles � ���

A shapefile is a type of data file that is used to store geo-
graphic information, such as the location of streets, build-
ings, and other features on a map. It is a common format
used in geographic information systems (GIS) software.
A shapefile consists of four components with different file
extensions:

• .shp (shapefile): This file stores the actual geometric
data for the features in the map, such as the shape
of a street or a building.

• .shx (shape index): This file stores the index of the
geometric data in the .shp file, which is used to
quickly access the data in the correct order.

6

• .dbf (database file): This file stores the attribute
data for the features in the map, such as the name
of a street or the population of a building.

• .prj (projection file): This file stores information
about the coordinate system and projection used for
the data in the shapefile. This is important for en-
suring that the map is displayed correctly and that
measurements are accurate.

Together, these four files make up a complete shapefile
and are necessary to properly display and analyze the ge-
ographic information.

Importing the Roses-Wolf dataset from Excel into
Stata

At the moment, the database we want to use to draw our maps
is in an excel sheet.

It has many tabs, and some lines are filled with headings before
the data begins, as shown here:

Figure 1: Screenshot of excel file

7

What we want to do is import the data from each tab, and
append it together.

import excel using RosesWolf_RegionalGDP_v6.xlsx, sheet("A1 Regional GDP") firstrow cellrange(A6:O179) clear # import Excel sheet

rename (D E F G H I J K L M N O) (year_1900 year_1910 year_1925 year_1938 year_1950 year_1960 year_1970 year_1980 year_1990 year_2000 year_2010 year_2015)

This is what the data now looks like inside Stata. It is a wide
dataframe, with 173 rows (the number of regions) and 15 vari-
ables (3 identifiers and 12 years worth of data)

Figure 2: Screenshot of Stata format

Tip

Recall that the Roses Wolf database has geographic data
on GDP and population at the nomenclature of territorial
units 2 (NUTS-2) level, from 1900 to 2015.
If you want to have a look at this data in more detail,
have a look at this Shiny app.

Next we want to be sure that Stata is reading in the values
as numbers rather than text. For this we use the destring
command.

8

https://jonathan-jayes.shinyapps.io/Roses-Wolf-database-on-regional-GDP/

import excel using RosesWolf_RegionalGDP_v6.xlsx, sheet("A1 Regional GDP") firstrow cellrange(A6:O179) clear allstring `# we import each sheet in the Excel file separately and save it as one file`

rename (D E F G H I J K L M N O) (year_1900 year_1910 year_1925 year_1938 year_1950 year_1960 year_1970 year_1980 year_1990 year_2000 year_2010 year_2015)
destring year_*, replace

If there are non-numerical values in a string you cannot use
destring and should not use the force-option as it would create
missing values A better approach is to check all cases that are
non-numerical and replace them (e.g. change “one” to “1”)

Other common data cleaning commands could include:

tab var1 if missing(real(var1)) # replace var1 ...
if ... # destring var1, replace

Next we want to take the data from a wide format to a long
format. A long format means that each row is an observation,
each column is a variable, and each cell has just one value in
it.

Figure 3: Reshape graphic

The reshape command in Stata is used to change the shape of
the data from one format to another. In this specific case, the
reshape long option is used to change the data from a “wide”
format to a “long” format.

9

The variables that come after “year_” are the variables that will
be converted from wide to long format. In this case, “year_”
is not a variable, it is a prefix of the variables that will be
reshaped.

The option i(NUTSCodes Region Countrycurrentborder) spec-
ifies the identifier variables, which are variables that uniquely
identify the observations in the dataset and will not be re-
shaped. In this case, “NUTSCodes”, “Region”, and “Coun-
trycurrentborder” are the identifier variables.

The option j(year) specifies the variable that will be used as the
new variable name for the reshaped variables. In this case, the
new variable name will be “year” and it will be the identifier of
the year of the data.

We save the data as a .dta file with the save command. The
replace option overwrites any file with the same name in the
directory.

help reshape # Read up about the command here
reshape long year_, i(NUTSCodes Region Countrycurrentborder) j(year)
rename year_ regional_gdp_millions
save regional_gdp, replace

Tip

Never overwrite your raw data - this could be a big prob-
lem if you haven’t saved it somewhere else. Good practice
is to save a copy of your data in a different folder before
the analysis, and make any changes through your do-file
(e.g. changing “one” to “1” in Stata rather than excel).

Now we can see the data in a long format if we use the browse
(br) command:

10

We repeat this process for the remaining sheets in the Excel
workbook.

import excel using RosesWolf_RegionalGDP_v6.xlsx, sheet("A1b Regional GDP (2011PPP)") firstrow cellrange(A6:O179) clear allstring # repetition of the steps above for each sheet
rename (D E F G H I J K L M N O) (year_1900 year_1910 year_1925 year_1938 year_1950 year_1960 year_1970 year_1980 year_1990 year_2000 year_2010 year_2015)
destring year_*, replace
reshape long year_, i(NUTSCodes Region Countrycurrentborder) j(year)
rename year_ regional_gdp_2011_ppp_millions
save regional_gdp_2011_ppp, replace
...

Importing the shapefiles into Stata

Describe importing a shapefile into Stata

clear # clear the dataset in memory

shp2dta using regions_nuts2, database(regions) coordinates(nutscoord) genid(_ID) replace

Now we have a little data cleaning to do: There are three partic-
ular regions that need to be joined together in the Roses-Wolf
database in order to be plotted correctly. If we don’t correct
these, there will be holes in our map, as shown below:

use regions, clear # fixing the identifier of the NUTS_Codes so that the merge below works for all regions in the dataset
replace NUTS_CODE = "AT12+AT13" if NUTS_CODE == "AT123"

11

Figure 4: Screenshot from my Shiny app

12

https://jonathan-jayes.shinyapps.io/Roses-Wolf-database-on-regional-GDP/

replace NUTS_CODE = "DE71+DE72" if NUTS_CODE == "DE712"
replace NUTS_CODE = "DE91+DE92" if NUTS_CODE == "DE912"
save regions, replace

Projections

Map projections are methods used to represent the surface of
the Earth on a flat map. Different projections have different
properties, such as preserving area, shape, or direction, and
each has its own set of distortions. The Mercator projection is a
cylindrical projection that was developed in the 16th century for
navigation. It is particularly useful for representing the entire
globe at once, but it distorts the size and shape of landmasses
near the poles.

Mercator popularity

Web Mercator, also known as Google Web Mercator,
Spherical Mercator, WGS 84 Web Mercator or WGS
84/Pseudo-Mercator, is a variant of the Mercator projec-
tion that is optimized for use on the web. It is the pro-
jection used by Google Maps, OpenStreetMap, and many
other online mapping services.

13

Figure 5: Obligatory XKCD comic
14

https://xkcd.com/977/

Have a look at this link to the Stata forum that explains
different projections.

We will use the Albers projection, which is saved as
nutscoord.dta in your working directory.

use nutscoord, clear # we use the Albers projection; every projection looks a bit different

Let’s give a gander what the projection looks using the scatter
command.

scatter _Y _X
scatter _Y _X, msize(tiny) msymbol(point)

(a) Scatter with no options (b) Scatter specifying msize and
msymbol

Figure 6: Comparison of scatter plots

Scatter options

The msize() option in the scatter command is used to set
the size of the markers in the graph. The markers can
be circles, squares, or other shapes, and the size option
controls their overall size. The value of the option can be
a number, which represents the size in units of the graph,
or a variable name, which represents the size relative to
the values of that variable.
The msymbol() option in the scatter command is used to
set the shape of the markers in the graph. The markers
can be circles, squares, or other shapes, and the msymbol
option controls their shape. The value of the option can

15

https://www.statalist.org/forums/forum/general-stata-discussion/general/1306288-legend-in-spmap

be a number, which represents the shape, or a variable
name, which represents the shape relative to the values of
that variable.

You can experiment with other projections, have a look at the
geo2xy help file:

help geo2xy

Figure 7: Stata’s projections

Merge shapefiles and data together

We’re nearly there! Now we have both file types in the correct
format in Stata. All that is left to do is merge them together
so that we can plot maps with the Roses-Wolf data.

We start by importing our clean, long format data.

use regional_gdp, clear # we merge all created files together

We are going to use the merge command. Read more about it
by typing help merge into the console.

16

Figure 8: Merge explained

Merge types

1:1 matches occur when each observation in one dataset
has a unique match in the other dataset, based on the
specified variable(s). This is the most common type of
match and is the default behavior of the merge command.
1:m matches occur when one observation in one dataset
has multiple matches in the other dataset, based on the
specified variable(s). This can happen when there are
duplicate values in the specified variable(s) in one of the
datasets.
m:m matches occur when multiple observations in one
dataset have multiple matches in the other dataset, based
on the specified variable(s). This is the least common type
of match, as it requires duplicate values in the specified
variable(s) in both datasets.

merge 1:1 NUTSCodes year using regional_gdp_2011_ppp # this is a 1:1 merge
drop _merge

You should get output that looks like so:

. merge 1:1 NUTSCodes year using regional_gdp_2011_ppp
this is a 1:1 merge

Result # of obs.

17

—————————————–
not matched 0
matched 2,076 (_merge==3)
—————————————–

We now repeat the process for all of our variables in the Roses-
Wolf database.

merge 1:1 NUTSCodes year using population, assert(match) nogen
merge 1:1 NUTSCodes year using share_agriculture, assert(match) nogen
merge 1:1 NUTSCodes year using share_industry, assert(match) nogen
merge 1:1 NUTSCodes year using share_services, assert(match) nogen

Now we add in area to all of the variables with an m:1 merge

merge m:1 NUTSCodes using area_km2, assert(match) nogen # this is a m:1 merge; there is also a 1:m merges; m:m merges are a bad idea

Let’s fix our nomenclature

rename NUTSCodes NUTS_CODE
merge m:1 NUTS_CODE using regions

Let’d now drop all of the regions for which there is map infor-
mation, but no data from the Roses-Wolf database.

drop if _merge == 2 # we keep all regions that are merged and delete those for which we have geographical information but no data
drop _merge
order _ID, after(NUTS_CODE)

Wonderful! Now we have joined together our geographic infor-
mation from the shapefiles with the data from the Roses-Wolf
database.

Formatting and Creating Variables

This next section is first setting up some calculated variables
(e.g. dividing GDP by population for GDP per capita) and
secondly adding nice names that are easy to understand what
we are up to.

18

We start by renaming our variables from title case to snake case
(where words are in lower case and separated by underscores)

rename Countrycurrentborder country

rename (Region regional_gdp_millions regional_gdp_2011_ppp_millions population_thousands area_km2) (region regional_gdp_1990 regional_gdp_2011 regional_population regional_area) # cleaning the dataset

Next we change our GDP and population values from being
denominated in millions and thousands to basic levels.

replace regional_gdp_1990 = regional_gdp_1990 * 1000000
replace regional_gdp_2011 = regional_gdp_2011 * 1000000
replace regional_population = regional_population * 1000

Next we sum across countries and years to create a summary
value for national GDP and national population from the re-
gional values.

bysort country year: egen national_gdp_1990 = total(regional_gdp_1990)
bysort country year: egen national_population = total(regional_population)

Creating per capita values at national and regional levels:

gen national_gdp_cap_1990 = national_gdp_1990 / national_population
gen regional_gdp_cap_1990 = regional_gdp_1990 / regional_population
gen regional_gdp_cap_2011 = regional_gdp_2011 / regional_population
sort country region year

Creating a population density variable:

gen population_density = regional_population / regional_area # you often have to calculate new variables, which you then can map

Next we are going to make use of a very powerful command,
egen , in combiation with the xtile command to create five
groups of regions, based on their where they fall in percentile
of regional GDP per capita, for every year which we have data
on them.

egen q_regional_gdp_cap_1990 = xtile(regional_gdp_cap_1990), n(5) by(year) # you can change the number of groups
sort country region year

19

Now we are going to create a variable for GDP per capita at
the regional level for each region, relative to the average of the
entire sample.

bysort year: egen mean_gdp_cap_eu = mean(regional_gdp_cap_1990)
sort country region year
gen relative_gdp_cap_eu = regional_gdp_cap_1990 / mean_gdp_cap_eu

Here we do the same for the country level.

bysort year country: egen mean_gdp_cap_country = mean(regional_gdp_cap_1990)
sort country region year
gen relative_gdp_cap_country = regional_gdp_cap_1990 / mean_gdp_cap_country

Finally, we are going to add some nice labels so that when we
draw our graphs they get nice legends by default.

In Stata you can have a variable name (e.g. “country”), and
a variable label (a long string e.g. “Country in Current Bor-
ders”).

label variable _ID "Region ID"
label variable year "Year"
label variable country "Country in Current Borders"
label variable regional_gdp_1990 "Regional GDP in 1990 International Dollars"
label variable regional_population "Regional Population"
label variable employment_share_agriculture "Regional Share of Employment in Agriculture"
label variable employment_share_industry "Regional Share of Employment in Industry"
label variable employment_share_services "Regional Share of Employment in Services"
label variable regional_area "Area in KM2"
label variable national_gdp_1990 "National GDP in 1990 International Dollars"
label variable national_gdp_cap_1990 "National GDP per Capita in 1990 International Dollars"
label variable regional_gdp_cap_1990 "Regional GDP per Capita in 1990 International Dollars"
label variable national_population "National Population"

format region NUTS_CODE %20s

save regional_dataset, replace

20

Summary statistics

In this section we use the tab and summarize commands to
create summary statistics. To export our summary statistics,
we use the outreg2 command.

Tab for summaries of categorical variables.

use regional_dataset, clear

tab country

tab region

21

Summarize for summaries of numeric variables

summarize national_gdp_cap_1990 if year == 1950, detail
summarize regional_gdp_cap_1990 if year == 1950, detail
summarize regional_gdp_cap_1990 if year == 2000, detail

Tip

You can use the option , detail or simply , d after the
summarize command to get summary values across the
distribution, rather than just at the mean of the distribu-
tion.

Exporting summary tables

Here the outreg2 command makes a table in MS Word format.
To learn more about outreg2, see this link.

outreg2 using sum_table.doc, replace sum(log) keep(regional_gdp_cap_1990) eqkeep(N mean sd) label
outreg2 if year == 1950 using sum_table_1950.doc, replace sum(log) keep(regional_gdp_cap_1990) eqkeep(N mean sd) label

We can also use the browse command (shortened to br) to
provide an easy to read summary within Stata.

sort year regional_gdp_cap_1990
br region country regional_gdp_cap_1990 if year == 1900 # compare with

We can compare this summary with table 2.6 in the course
book.

22

https://www.princeton.edu/~otorres/Outreg2.pdf

br region country regional_gdp_cap_1990 if year == 2010

Basic maps

Now we get to the fun part! Let’s load our nice and tidy
dataset.

use regional_dataset, clear

help spmap

spmap is aimed at visualizing several kinds of spatial data,
and is

particularly suited for drawing thematic maps and display-
ing the results

of spatial data analyses.

23

Basic command

Here we draw a map with just the outline of our regions. We
use the nutscoord.dta file as our map.

spmap using "nutscoord.dta" if year == 1950, id(_ID)

Adding titles and notes

spmap using "nutscoord.dta" if year == 1960, id(_ID) ///
title("My first Map", size(large)) ///
note("Source: Rosés-Wolf (2020)", size(vsmall) pos(5))

24

Introducing a fill

Let’s now map the variable for National GDP per capita to the
fill aesthetic for the year 1950.

spmap national_gdp_cap_1990 using "nutscoord.dta" if year == 1950, id(_ID)

Notice that we now get a legend in the bottom left hand corner
that shows us what the different colours on the map mean.
Look at Sweden and Denmark go!

25

Change the colour palette

Here we use the palette Blues2 to specify what colours we want
to fill our base map polygons.

spmap regional_gdp_cap_1990 using "nutscoord.dta" if year == 1950, id(_ID) fcolor(Blues2)

26

Change the formatting of the legend

spmap regional_gdp_cap_1990 using "nutscoord.dta" if year == 1950, id(_ID) fcolor(Blues2) legend(pos(9)) legstyle(2)

That’s a bit better! The numbers still look horrid though.

27

Fix legend formatting

help format // you can format any variable
format regional_gdp_cap_1990 %12.0fc // 12 numbers left of the decimal point; 0 to the right; commas to denote thousands
spmap regional_gdp_cap_1990 using "nutscoord.dta" if year == 1950, id(_ID) fcolor(Blues2) legend(pos(9)) legstyle(2)

Stata number formatting

In Stata, the number formatting for graphs is controlled
by format codes.
The format code “%12.0fc” is a combination of four parts:

• “%12” specifies the number of spaces to the left of
the decimal point, in this case 12 spaces.

• “.0” specifies the number of decimal places to be dis-
played, in this case 0.

• “f” specifies the data type, in this case a floating
point number

28

• “c” specifies the format of the number, in this case
including commas as the thousands separator.

In general, format codes can be used to control the ap-
pearance of numbers in tables, graphs and other outputs
in Stata. Each format code has a combination of width,
decimal places and data type specifiers to format the num-
bers as desired.

That’s better!

Change legend breaks and add a title

Let’s make the numbers in the legend more logical:

Tip

In Stata, the clmethod() command is used to specify the
method for creating breaks (or intervals) on a color scale
in a graph. The clbreaks() command is used to specify

29

the values of the breaks.
In this specific example, the command “clmethod(custom)
clbreaks(0 (1000) 12000)” is used to create a custom color
scale with the following properties:

• The scale starts at 0.
• The gradations of the scale are 1,000.
• The top end of the scale is 12,000.

The clbreaks() command is set to “0 (1000) 12000”
which means that the color scale starts at 0 and continues
to increase in increments of 1,000 up to 12,000. In other
words, the scale will have 12 breaks or intervals: 0, 1000,
2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000,
11000, 12000.
This custom scale will be used to colour the data points
in the graph accordingly.
It’s important to note that the command “cl-
method(custom)” is required to use the custom breaks
defined in the “clbreaks()” command.

The number of breaks is a stylistic choice and can impact the
message that the reader takes away. Consider how the dark
blue areas stand out in Sweden and the UK in the second figure,
compared to the first.

(I think you see by now what the graph editor looks like - I’m
saving the image from the editor from now on.)

spmap regional_gdp_cap_1990 using "nutscoord.dta" if year == 1950, id(_ID) fcolor(Blues2) legend(pos(9)) legstyle(2) ///
title("Regional GDP per Capita - 1950 ", size(medium)) ///
osize(0.02 ..) ocolor(gs8 ..) ///
clmethod(custom) clbreaks(0 (1000) 12000)

spmap regional_gdp_cap_1990 using "nutscoord.dta" if year == 1950, id(_ID) fcolor(Blues2) legend(pos(9)) legstyle(1) ///
title("Regional GDP per Capita - 1950", size(medium)) ///
osize(0.02 ..) ocolor(white ..) ///
clmethod(custom) clbreaks(0 3000 (1000) 6000 12000)

30

Figure 9: Lots of breaks Figure 10: Fewer breaks
Comparison of breaks

31

What do we do about the areas with no data?

Let’s have a look at the employment share in industry.

Look at the North of the UK in 1950 - such a powerhouse!

Tip

The ndfcolor(gray) command makes areas with no data
greyed out (note the US spelling of gray vs grey)

spmap employment_share_industry using "nutscoord.dta" if year == 1950, id(_ID) fcolor(Blues2) legend(pos(9)) legstyle(2) ///
title("Employment Share Industry - 1950", size(medium)) ///
osize(0.02 ..) ocolor(white ..) ///
ndfcolor(gray) ndocolor(none ..) ndsize(0.02 ..)

spmap employment_share_industry using "nutscoord.dta" if year == 1950, id(_ID) fcolor(Blues2) legend(pos(9)) legstyle(2) ///
title("Employment Share Industry - 1950", size(medium)) ///
osize(0.02 ..) ocolor(white ..) ///
clmethod(custom) clbreaks(0 (0.2) 0.8) ///
ndfcolor(gray) ndocolor(none ..) ndsize(0.02 ..)

spmap employment_share_industry using "nutscoord.dta" if year == 1950, id(_ID) fcolor(Blues2) legstyle(2) ///
title("Employment Share Industry - 1950", size(large)) ///
osize(0.02 ..) ocolor(white ..) ///
clmethod(custom) clbreaks(0 (0.2) 0.8) ///
legend(pos(9) size(medium) rowgap(1.5) label(5 "60-80 %") label(4 "40-60 %") ///
label(3 "20-40 %") label(2 "0-20 %") label(1 "No data")) ///
ndfcolor(gray) ndocolor(white ..) ndsize(0.02 ..)

32

Figure 11: Default legend Figure 12: Breaks by 20 percent Figure 13: A well formatted legend
More legend comparisons

33

	Purpose
	Structure
	Getting started
	Install additional programs and set-up

	Data types
	Importing the Roses-Wolf dataset from Excel into Stata
	Importing the shapefiles into Stata
	Merge shapefiles and data together

	Formatting and Creating Variables
	Summary statistics
	Tab for summaries of categorical variables.
	Summarize for summaries of numeric variables
	Exporting summary tables

	Basic maps
	Basic command
	Adding titles and notes
	Introducing a fill
	Change the colour palette
	Change the formatting of the legend
	Fix legend formatting
	Change legend breaks and add a title
	What do we do about the areas with no data?

